在過(guò)去五十多年中,從肖克萊等人發(fā)明第一個(gè)晶體管到超大規(guī)模集成電路出現(xiàn),硅半導(dǎo)體工藝取得了一系列重大突破,使得以硅材料為主體的CMOS集成電路制造技術(shù)為主流,逐漸成為性能價(jià)格比最優(yōu)異、應(yīng)用最廣泛的集成電路產(chǎn)業(yè)。
如果說(shuō)在亞微米/深亞微米(Sub-Micron)時(shí)代,器件的主要bottleneck在熱載流子效應(yīng)(HCE: Hot Carrier Effect)以及短溝道效應(yīng)(SCE: Short Channel Effect)。那么在納米(or Sub-0.1um)時(shí)代,隨著器件特征尺寸的縮小,器件內(nèi)部pn結(jié)之間以及器件與器件之間通過(guò)襯底的相互作用愈來(lái)愈嚴(yán)重,出現(xiàn)了一系列材料、器件物理、器件結(jié)構(gòu)和工藝技術(shù)等方面的新問(wèn)題,使得亞0.1微米硅集成電路的集成度、可靠性以及電路的性能價(jià)格比受到影響。這些問(wèn)題主要包括:
(1) 體硅CMOS電路的寄生可控硅閂鎖效應(yīng)以及體硅器件在宇宙射線輻照環(huán)境中出現(xiàn)的軟失效效應(yīng)等使電路的可靠性降低;
(2) 隨著器件尺寸的縮小,體硅CMOS器件的各種多維及非線性效應(yīng)如表面能級(jí)量子化效應(yīng)、隧穿效應(yīng)、短溝道效應(yīng)、窄溝道效應(yīng)、漏感應(yīng)勢(shì)壘降低效應(yīng)、熱載流子效應(yīng)、亞閾值電導(dǎo)效應(yīng)、速度飽和效應(yīng)、速度過(guò)沖效應(yīng)等變得十分顯著,影響了器件性能的進(jìn)一步改善;
(3) 器件之間隔離區(qū)所占的芯片面積隨器件尺寸的減小相對(duì)增大,使得寄生電容增加,互連線延長(zhǎng),影響了集成度及速度的提高。
雖然深槽隔離(STI->DTI, Deep Trench Isolation)、電子束刻蝕、硅化物、中間禁帶柵電極等工藝技術(shù)能夠降低這種效應(yīng),但是只要PN結(jié)存在就會(huì)有耗盡區(qū),只要有Well就會(huì)有襯底漏電,所以根本無(wú)法解決。所以絕緣襯底上硅(Silicon-On-Insulator,簡(jiǎn)稱SOI)技術(shù)以其獨(dú)特的材料結(jié)構(gòu)有效地克服了體硅材料不足,以前最早是在well底部做一個(gè)oxide隔離層,業(yè)界稱之為BOX (Buried OXide),隔離了well的bulk的漏電,但是這種PN結(jié)依然在well里面,所以PN結(jié)電容和結(jié)漏電還是無(wú)法解決,這種結(jié)構(gòu)我們稱之為部分耗盡型SOI (PD-SOI)。后來(lái)繼續(xù)演進(jìn)發(fā)展到減薄oxide上面的Silicon厚度(UTSi: Ultra-Thin Si),使得它和PN結(jié)深度一樣,這樣PN結(jié)底部的耗盡層就不見(jiàn)了,這就是傳說(shuō)中的全耗盡型SOI (FD-SOI)。目前,主流的納米制程技術(shù)都必須要采用FD-SOI技術(shù),比如最近IBM的7nm技術(shù)就是要用SOI加上SiGe來(lái)抑制short channel effect。
講到SOI,最早的前身應(yīng)該是SOS(Silicon on Sapphire, 藍(lán)寶石上硅),那個(gè)年代主要用于宇宙航天等電子器件(Satellite system),防止宇宙射線照射(radiation)導(dǎo)致器件失效,為啥用藍(lán)寶石主要是因?yàn)樗且环N氧化鋁單晶結(jié)構(gòu),可以用它的(1-102)晶面上用異質(zhì)外延方法生長(zhǎng)一層外延層單晶硅。但是由于價(jià)格太貴無(wú)法民用商業(yè)化(commercial),后來(lái)到1980年代逐漸被SOI取代。
所以,如何在BOX(Buried OXide)上長(zhǎng)一個(gè)Si來(lái)形成SOI wafer是一個(gè)技術(shù)挑戰(zhàn),我們前面講了如果要形成單晶層你的底部必須是單晶,如果SOS當(dāng)然也可以,如果是Oxide肯定就不行了。怎么辦?如何制備SOI wafer?業(yè)界了解到的就如下三種:
1) 注氧隔離 (SIMOX: Separation by Implantation of Oxygen),通過(guò)高劑量(~E18 氧離子/cm2)的氧離子通過(guò)高能量(200KeV)注入到Si下面,然后通過(guò)Post implant anneal來(lái)反應(yīng)形成~400nm的BOX (Buried OXide)。
SIMOX做出來(lái)的SOI具有比較好的BOX均勻性,能夠通過(guò)注入能量控制BOX上面Si的厚度。但是注入退火的溫度影響Si的微結(jié)構(gòu)(microstructure)。所以退火溫度一般選擇~600C。
還有個(gè)問(wèn)題是BOX厚度太薄會(huì)導(dǎo)致SOI與襯底擊穿短路,起不到隔離效果,所以需要一道Internal OXide (ITOX)來(lái)長(zhǎng)一層OX (~1350C),而一部分氧會(huì)穿過(guò)Si進(jìn)入到Si/BOX界面反應(yīng)生成ITOX來(lái)提高BOX厚度。
2) 鍵合法(Wafer bonding/mounting):將兩個(gè)氧化的Si晶片鍵合在一起,通過(guò)后續(xù)的熱處理減小鍵合應(yīng)力。也叫l(wèi)ayer transfer。
3) Smart Curt法:大家自己百度吧。
SOI的制程會(huì)帶來(lái)很多優(yōu)點(diǎn),如減小短溝效應(yīng)(SCE)、減小亞閾值漏電(subthreshold leakage, off-current)、提高飽和電流(on-current),所以它能提供了更高速(結(jié)電容變小)、低功耗的性能(低漏電)。當(dāng)然SOI也有它固有的寄生特性:
1) 最典型的為kink-effect,也叫作floating-body effect (浮體效應(yīng)),因?yàn)镾OI的well都是floating在substrate里面,所以它的well是沒(méi)有接電壓的,當(dāng)漏極的反偏pn結(jié)流過(guò)電流時(shí),會(huì)使硅外延層的電位提高,從而增加了溝道電導(dǎo),故隨著漏電壓的增大,漏電流也增大,形成非飽和特性,從而降低了漏極擊穿電壓性能(https://en.wikipedia.org/wiki/Floating_body_effect)。而且浮體效應(yīng)會(huì)導(dǎo)致閾值電壓的浮動(dòng)、記憶效應(yīng)、遲滯效應(yīng)等一些列問(wèn)題。當(dāng)然襯底接出會(huì)解決這個(gè)問(wèn)題,但是會(huì)增加面積以及增加體電阻。
2) 其次就是自加熱效應(yīng)(self-heating effect),因?yàn)槲覀兊撞亢椭苓叾际怯肙xide隔離(DTI和BOX),而oxide的導(dǎo)熱性不好,所以載流子碰撞產(chǎn)生的熱量被聚集在well里,會(huì)減小載流子壽命。在Id-Vd特性曲線里飽和區(qū)曲線會(huì)略微下降,而不是微微上升。(自己google或baidu吧)
PD-SOI和FD-SOI的區(qū)別?為啥不直接用FD-SOI技術(shù)?
因?yàn)镕D-SOI的開(kāi)啟電壓對(duì)BOX上的Si厚度非常敏感(10mV/nm),所以在特定的領(lǐng)域還是會(huì)使用PD-SOI來(lái)解決Vt的variation問(wèn)題。但是FD-SOI的Subthreshold亞閾值特性比PD-SOI好很多(<65mv>
現(xiàn)在很多8寸的0.18um/0.13um以下的BCD和RF制程已經(jīng)開(kāi)始導(dǎo)入SOI制程平臺(tái)或SOC (system on chip)來(lái)集成RF和高速度和低功耗特性,未來(lái)的物聯(lián)網(wǎng)(IoT)應(yīng)該也是SOI的主流市場(chǎng)(無(wú)線通訊和低功耗),只是制程瓶頸在于成本和復(fù)雜度。